Evaluating the dynamics and electrostatic interactions of folded proteins in implicit solvents.
نویسندگان
چکیده
Three implicit solvent models, namely GBMVII, FACTS, and SCPISM, were evaluated for their abilities to emulate an explicit solvent environment by comparing the simulated conformational ensembles, dynamics, and electrostatic interactions of the Src SH2 domain and the Lyn kinase domain. This assessment in terms of structural features in folded proteins expands upon the use of hydration energy as a metric for comparison. All-against-all rms coordinate deviation, average positional fluctuations, and ion-pair distance distribution were used to compare the implicit solvent models with the TIP3P explicit solvent model. Our study shows that the Src SH2 domains solvated with TIP3P, GBMVII, and FACTS sample similar global conformations. Additionally, the Src SH2 ion-pair distance distributions of solvent-exposed side chains corresponding to TIP3P, GBMVII, and FACTS do not differ substantially, indicating that GBMVII and FACTS are capable of modeling these electrostatic interactions. The ion-pair distance distributions of SCPISM are distinct from others, demonstrating that these electrostatic interactions are not adequately reproduced with the SCPISM model. On the other hand, for the Lyn kinase domain, a non-globular protein with bilobal structure and a large concavity on the surface, implicit solvent does not accurately model solvation to faithfully reproduce partially buried electrostatic interactions and lobe-lobe conformations. Our work reveals that local structure and dynamics of small, globular proteins are modeled well using FACTS and GBMVII. Nonetheless, global conformations and electrostatic interactions in concavities of multi-lobal proteins resulting from simulations with implicit solvent models do not match those obtained from explicit water simulations.
منابع مشابه
Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملResidual Structures, Conformational Fluctuations, and Electrostatic Interactions in the Synergistic Folding of Two Intrinsically Disordered Proteins
To understand the interplay of residual structures and conformational fluctuations in the interaction of intrinsically disordered proteins (IDPs), we first combined implicit solvent and replica exchange sampling to calculate atomistic disordered ensembles of the nuclear co-activator binding domain (NCBD) of transcription coactivator CBP and the activation domain of the p160 steroid receptor coa...
متن کاملMolecular dynamics simulations of large integral membrane proteins with an implicit membrane model.
The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties ...
متن کاملEvaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields
Recent advances in computer hardware and software have made rigorous evaluation of current biomolecular force fields using microsecond-scale simulations possible. Force fields differ in their treatment of electrostatic interactions, including the formation of salt bridges in proteins. Here we conducted an extensive evaluation of salt bridge interactions in the latest AMBER, CHARMM, and OPLS for...
متن کاملICSM: An order N method for calculating electrostatic interactions added to TINKER
We present an order N method for calculating electrostatic interactions that has been integrated into the molecular dynamics portion of the TINKER Molecular Modeling package. This method, introduced in a previous paper [J. Chem. Phys. 131 (2009) 154103] and termed the Image-Charge Solvation Model (ICSM), is a hybrid electrostatic approach that combines the strengths of both explicit and implici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 25 1 شماره
صفحات -
تاریخ انتشار 2016